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3-Amino-5-hydroxybenzoic acid (AHBA,2) is the precursor of
the mC7N units1 found in mitomycin2 and ansamycin3 antibiotics,
such as rifamycin B4 and ansamitocin P-3.5 The biosynthesis of
AHBA proceeds via a novel variant of the shikimate pathway
(Scheme 1) which appears to branch off from the normal pathway
at the stage of 3,4-dideoxy-4-amino-D-arabino-heptulosonic acid
7-phosphate (aminoDAHP,1).6 Purification of the last enzyme in
this sequence, AHBA synthase, which aromatizes 5-amino-5-deoxy-
3-dehydroshikimic acid (aminoDHS) to AHBA, and cloning of the
encoding gene,rifK , by reverse genetics7 set the stage for the
cloning, sequencing, and analysis of the entire 95 kbp rifamycin
(rif ) biosynthetic gene cluster fromAmycolatopsis mediterranei
S6998 and subsequently of the mitomycin9 and ansamitocin (asm)10

biosynthetic genes fromStreptomyces laVendulaeandActinosyn-
nema pretiosum, respectively.

Further studies on the rifamycin biosynthetic gene cluster
identified seven genes,rifG, -H, -J, -K, -L, -M, and-N, which are
involved in the biosynthesis of AHBA.8,11 Three of these,rifG, -H,
and -J, encode homologues of shikimate pathway enzymes, and
their products were identified as 5-amino-5-deoxy-3-dehydroquinic
acid (aminoDHQ) synthase, aminoDAHP synthase, and aminoDHQ
dehydratase, respectively, confirming the validity of the pathway
from aminoDAHP to AHBA.11 However, the mode of formation
of aminoDAHP has remained enigmatic, although it is clearly not
derived from DAHP.6,11Three additional gene products, RifL, RifM,
and RifN, are absolutely essential for AHBA biosynthesis and
function in the pre-aminoDAHP part of the pathway.11 RifL closely
resembles Pur10, an oxidoreductase involved in puromycin bio-
synthesis.12 RifM is homologous to phosphatases belonging to the
CBBY family,13 and RifN is related to a glucose kinase fromS.
coelicolor A3 implicated in glucose repression.14 Their role in
aminoDAHP formation has so far remained unclear, as has the
origin and mode of introduction of the nitrogen atom. No other

plausible candidate gene for the nitrogen introduction step has been
found in therif cluster, and circumstantial evidence11,15 suggests
that RifK may have a second function in the pathway, that of
introducing the nitrogen into a precursor of aminoDAHP, in addition
to its well-characterized role as the AHBA synthase.7,17

Recent work by Guo and Frost18 has shed new light on the issue
by demonstrating that the aminosugar, 3-amino-3-deoxy-D-fructose
6-phosphate (aminoF6P,5), can be converted into aminoDAHP
(together with DAHP) or further into AHBA by the action of
transketolase fromEscherichia coli, with ribose 5-phosphate as
acceptor, and the recombinant RifH protein or a cell-free extract
of A. mediterraneiplus phosphoenolpyruvate (PEP). Presumably,
the transketolase converted5 into the imino analogue of erythrose
4-phosphate (E4P), which then partly served directly as a substrate
for the RifH-catalyzed condensation with PEP to give aminoDAHP
and partly underwent hydrolysis to E4P to produce DAHP. As a
biosynthetic source of the aminoF6P, Guo and Frost18 proposed
kanosamine (3-amino-3-deoxy-D-glucose,3), a known secondary
metabolite of Streptomycesand other bacteria.19 Since either
kanosamine or its isomerization product would have to be phos-
phorylated to give aminoF6P, this suggests a possible role for the
kinase encoded byrifN.

To examine its functional activity, RifN was overexpressed in
E. coli as a His6 fusion protein20 and purified to near homogeneity
on a Ni-NTA column (Qiagen). The standard coupled assay for
kinase activity was performed as described by Seno and Chater,21

measuring NADH consumption at 340 nm. Only kanosamine
reacted specifically with RifN+ ATP, while all other sugar
derivatives examined (glucose, mannose, galactose, fructose, glu-
cosamine, and 3-amino-3-deoxy-D-fructose) gave no change in
absorbance at 340 nm (Figure 1). The product generated from
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Figure 1. Substrate specificity of RifN.Scheme 1
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kanosamine was prepared on a preparative scale22 and identified
by 1H NMR, 13C NMR, and ESI-MS analyses23 as kanosamine
6-phosphate (4). The 1H NMR in D2O showed two anomeric
doublets at 4.57 and 5.12 ppm (J ) 7.8 and 3.6 Hz, respectively)
in a 1:1 ratio.31P-coupled signals in the13C NMR for C-6 (J ) 3.6
Hz) and C-5 (J ) 6.1 Hz) established the position of the phosphate
group.Km values of 1.9 and 0.39 mM, respectively, were determined
for ATP and kanosamine, andVmax is 0.6 mmol min-1 mg-1 at 37
°C and pH 7.2. The enzyme is dependent on Mg2+, with Mn2+,
Co2+, and Ni2+ able to substitute at 21, 30, and 18% relative
efficiency, whereas Zn2+, Cu2+, and Fe2+ are inhibitory.

The data identify RifN as a specific kanosamine 6-kinase, which
together with the essential nature of therifN gene11 establishes
kanosamine and its 6-phosphate as intermediates in AHBA forma-
tion. RifL and -M must function before RifN in the pathway, since
a rifN mutant ofA. mediterraneiwas able to complement both a
rifL and arifM mutant to restore rifamycin B production (data not
shown). Keeping in mind the likely biosynthesis of kanosamine,24

this allows us to propose a new pathway for aminoDAHP formation
starting from UDP-glucose (Scheme 2). RifL and RifK jointly

convert UDP-glucose into UDP-kanosamine,25 which is cleaved by
RifM to kanosamine. Following the action of RifN, a “housekeep-
ing” isomerase (no candidate gene for a dedicated enzyme has been
found in therif cluster8) must convert kanosamine 6-phosphate into
aminoF6P. The conversion of the latter into the imine of-E4P may
be catalyzed by Rif Orf15, which is homologous to transketolases8

and which may act in concert with the aminoDAHP synthase, RifH,
to suppress hydrolysis of the imine. Work is underway to further
test this hypothetical pathway.
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